Scheme I

10

$\xrightarrow{2 \text { steps }} 2$
was cooled to $0^{\circ} \mathrm{C}$, and 40 mL of acetonitrile, 20 mL of pH 7.2 phosphate buffer, and 35 mL of tetra- n-butylammonium fluoride (1 M in THF) was added. The solution was allowed to warm to ambient temperature and acidified with 3 N HCl . The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried, concentrated, and then purified by flash chromatography using $3: 1$ hexanes-ethyl acetate to provide 3.49 g (91% yield) of phenol 8a. Phenol $8 \mathbf{a}$ was a clear liquid: HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{5} 250.08413$, found 250.08439; IR (film) 3020, $1736,1580,1474,1215,827 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 2.58$ ($\mathrm{s}, 3$ H), 2.72 (dd, $J=16.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dd, $J=16.2$ and 6.3 $\mathrm{Hz}, 1 \mathrm{H}$), 3.23 (dd, $J=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (dd, $J=16.5,8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ $(\mathrm{d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 12.16(\mathrm{~s}, 1 \mathrm{H})$; TLC (3:1 H:EA) $R_{f}=0.30$.
trans-Methyl (7-Bromo-3,4-dihydro-5,8-dioxo-1-methyl-1H-2-benzopyran-3-yl)acetate (10). To a solution of phenol $8 \mathrm{a}(0.75 \mathrm{~g}, 3.0 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ was added 10.5 mL of a 1 M solution of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by bromine $(0.948 \mathrm{~g}, 6.0 \mathrm{mmol})$. The solution was stirred for 1.5 h . Water (10 mL) was carefully added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated NaHCO_{3} solution and then with brine. The organic layer was dried and concentrated. The crude product was purified by flash chromatography using $3: 1$ hexanes-ethyl acetate to provide 0.85 g (82% yield) of 9 .

In practice, 9 was reduced directly to afford 10 . To a solution of $9(0.280 \mathrm{~g}, 0.81 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added triethylsilane ($0.174 \mathrm{~g}, 1.5 \mathrm{mmol}$) followed by $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(0.1 \mathrm{~mL})$. After 30 min , the reaction was warmed to $25^{\circ} \mathrm{C}$ and the solvent was removed. The crude product was immediately purified by flash chromatography using 3:1 hexanes-ethyl acetate to afford a 95% yield of 10 . Quinone 10 was an oil: HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}_{5} 327.99463$, found 327.99502; IR (film) 3061, 2982, 1738, $1668,1655,1595,1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.47(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}$), 2.24 (ddd, $J=18.3,10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (dd, $J=$ $15.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.94(\mathrm{~m}$, 1 H), 4.69-4.78 (m, 1 H$), 7.26(\mathrm{~s}, 1 \mathrm{H})$; TLC ($3: 1 \mathrm{H}: \mathrm{EA}$) $R_{f}=0.17$.
trans-Methyl (3,4-Dihydro-5,10-dioxo-9-hydroxy-1-methyl-1 \boldsymbol{H}-naphtho $[2,3-c$]pyran-3-yl)acetate (11). To a solution of $10(0.098 \mathrm{~g}, 0.3 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise 1-(trimethylsiloxy)-1-methoxy-1,3-butadiene $(0.103 \mathrm{~g}$, 0.6 mmol). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to ambient temperature. Triethylamine (0.070 $\mathrm{g}, 0.7 \mathrm{mmol}$) was added, and the solution was stirred for 5 min . The solvent was removed in vacuo, and the residue was dissolved in acetonitrile. A 5% solution of HF in acetonitrile was added, and the solution was stirred for 5 min (TLC). The solvent was
removed in vacuo, and the residue was partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by silica gel chromatography using $5: 1$ hexanes-ethyl acetate to provide 0.032 g (34%) of 11 . This compound was identical with that produced in our previous synthesis: ${ }^{2}$ HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} 300.0998$, found 300.0993 ; IR (film) 3018, 2990, 1742, 1663, 1624, 1595, 1296, $1215 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.54(\mathrm{~d}, J=6.6, \mathrm{~Hz}, 3 \mathrm{H}), 2.34$ (ddd, $J=18.5,10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=16.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, $J=15.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dt, $J=18.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (s, 3 H), 3.91-3.99 (m, 1 H), 4.86-4.90 (m, 1 H), 7.71-7.79 (m, 1 H), 8.04-8.10 (m, 1 H); TLC ($3: 1 \mathrm{H}: \mathrm{EA}$) $R_{f}=0.47$.
Acknowledgment. We thank the ISU Biotechnology Council for support of this work.
Registry No. 2, 52934-83-5; 8a, 124287-42-9; 8b, 124287-45-2; 9, 124287-43-0; 10, 124287-44-1; 11, 124438-93-3; $\mathrm{CH}_{2}=$ $\mathrm{CHCH}=\mathrm{C}(\mathrm{OMe}) \mathrm{TBSO}, 119582-47-7 ; \mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{C}(\mathrm{OMe})$. TMS, 124287-46-3; acetylbenzoquinone, 1125-55-9.

> Transformation of α - and β-Ionones into α - and β-Damascone and β-Damascenone Using Allylsilane Chemistry

> Elisabetta Azzari, Cristina Faggi, Nedo Gelsomini, and Maurizio Taddei*

> Dipartimento di Chimica Organica "U. Schiff", Università di Firenze, Via G. Capponi 9, I-50121 Firenze, Italy

Received July 6, 1989
The damascones and damascenones are flavor components present in Rosa damascena and in several varieties of fruits, grapes, and wines. ${ }^{1}$ Their importance as essences for perfumes, cosmetics, and foods has justified the large number of syntheses reported recently in the literature. ${ }^{2}$

[^0]

Scheme \mathbf{I}^{a}

${ }^{a}$ (a) $\mathrm{NaBH}_{4} / \mathrm{MeOH} ;$ (b) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMAP}$; (c) $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right.$. $\mathrm{CuLi} \cdot \mathrm{LiCN}$; (d) $\mathrm{OsO}_{4} / \mathrm{Me}_{3} \mathrm{NO} \cdot 3 \mathrm{H}_{2} \mathrm{O}$; (e) $\mathrm{KH} / \mathrm{THF}$; (f) $\mathrm{MnO}_{2} /$ acetone.

We report here a new preparation of α-damascone (7), β-damascone (13), and β-damascenone (14), employing, as key reagents, allylsilanes derived from α - and β-ionone (1 and 8).
By reduction of α-ionone (1) with NaBH_{4}, ionol (2) was obtained in a purity sufficient for direct transformation with acetic anhydride into acetate 3 . This allylic acetate reacted with (trimethylsilyl)cuprate (prepared from (trimethylsilyl)lithium and copper cyanide ${ }^{3}$ regiospecifically at $\mathrm{C}-3$, giving the (E)-allylsilane 4 (Scheme I).

Osmylation of 4 using $\mathrm{OsO}_{4} / \mathrm{Me}_{3} \mathrm{NO}_{4}{ }^{4}$ gave diol 5 , which underwent Peterson elimination with KH in THF to give exclusively the (E)- α-damascol (6). Assuming this elimination to be a syn process, ${ }^{5}$ we presumed that OsO_{4} approached the allylsilane double bond from the opposite side of the trimethylsilyl group.

Oxidation of 6 with activated MnO_{2} in acetone gave α-damascone (7) in 53% yield. Several attempts to improve the yield by changing the reaction conditions or changing the oxidizing agent (we tried PDC/DMF, $\mathrm{DMSO} /(\mathrm{COCl})_{2} / \mathrm{Et}_{3} \mathrm{~N}$, or $\mathrm{CrO}_{3} /$ pyridine) did not give better results.

The transformation of α-ionone (1) into α-damascone (7) was achieved in 22% overall yield ${ }^{6}$ and did not affect the chiral center present in the starting material, ${ }^{7}$ giving 7 in optically pure form $\left([\alpha]^{20} \mathrm{D}=+330^{\circ}\left(c=10\right.\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ $\left[\right.$ lit. ${ }^{7 \mathrm{bb}}[\alpha]^{20}{ }_{\mathrm{D}}=+324^{\circ}\left(c=10\right.$ in $\left.\mathrm{CHCl}_{3}\right)$].
β-Damascone (13) and β-damascenone (14) were analogously prepared from β-ionone (8) via allylsilane 11. Treatment of 11 with MCPBA followed by TBAF gave β-damascol 12 in 55% yield (see Scheme II).

Compound 12 was oxidized with PDC in DMF at $0^{\circ} \mathrm{C}$ to give β-damascone (13). β-Damascone (13) was transformed into β-damascenone (14) by a modification of a previously described procedure. ${ }^{8}$ Bromination was performed with NBS at $40^{\circ} \mathrm{C}$, and dehydrohalogenation carried out in a Kughelrohr apparatus, under vacuum at $80^{\circ} \mathrm{C}$ in presence of DABCO/DMAP, gave β-damascenone (14) in good yield (86%).

The use of allylsilanes 4 and 11 in synthesis of terpenes

[^1]
a (a) $\mathrm{NaBH}_{4} / \mathrm{MeOH}$; (b) $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{EtN} / \mathrm{DMAP} ;$ (c) $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}{ }_{2}\right.$ CuLi-LiCN; (d) MCPBA, TBAF-3H2O; (e) PDC/DMF; (f) NBS, DABCO/DMAP, $80^{\circ} \mathrm{C} / 25 \mathrm{mmHg}$.
and carotenoids is currently under way in our laboratories.

Experimental Section

(Z)-1-(2,6,6-Trimethylcyclohex-2-en-1-yl)but-1-en-3-ol (α Ionol, 2). Sodium borohydride ($1.09 \mathrm{~g}, 29 \mathrm{mmol}$) was dispersed in dry methanol (50 mL) and cooled to $0^{\circ} \mathrm{C}$, and then $(+)$ - α-ionone (1) $\left([\alpha]^{25}{ }_{\mathrm{D}}=+385^{\circ}(c=5\right.$, hexane), (2,4-dinitrophenyl)hydrazone, $\mathrm{mp}=126-128^{\circ} \mathrm{C}$, lit. $.^{7} \mathrm{mp} 129^{\circ} \mathrm{C}, 5 \mathrm{~g}, 26.0 \mathrm{mmol}$) in dry methanol $(10 \mathrm{~mL})$ was added slowly. After 1 h at $0^{\circ} \mathrm{C}$, the mixture was warmed to room temperature and stirred for 3 h . The flask was cooled again at $0^{\circ} \mathrm{C}$, and a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ was cautiously added. The mixture was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$; the organic fractions were collected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave $2(4.7 \mathrm{~g}, 93 \%)$ as an oil, which was used without further purification. A small sample was submitted to spectroscopic analysis after PTLC: IR (neat) 3340 , 2927, $1650,1455,870 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.750$ and $0.772(2 \mathrm{~s}, 3 \mathrm{H}), 0.831$ and $0.835(2 \mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~m}, 2 \mathrm{H}), 1.210$ and $1.217(2 \mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.93$ (m, 1 H), 2.045 (br d, $1 \mathrm{H}, \mathrm{OH}), 4.252(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(2)), 5.32(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}(2)$-cycle $), 5.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(3)), 5.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(4))$; MS m/e (\%) $194\left(\mathrm{M}^{+}, 1\right), 138(33), 123$ (18), 95 (95), 43 (100).
(E)-1-(2,6,6-Trimethylcyclohex-1-en-1-yl)but-1-en-3-ol (β Ionol, 9). β-Ionol 9 ($4.5 \mathrm{~g}, 90 \%$) was prepared as previously described for 2: IR (neat) $3360,2930,1450,875 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.934(\mathrm{~s}, 6 \mathrm{H}), 1.613(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H})$, $4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}(3)), 5.445\left(\mathrm{dd}, J_{1}=17 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(2)\right)$, $6.000(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(1)) ; \mathrm{MS} \mathrm{m} / e(\%) 194\left(\mathrm{M}^{+}, 7\right), 161$ (65), 136 (26), 121 (93), 119 (54), 93 (43), 91 (42), 43 (100).
α-Ionol Acetate (3). α-Ionol (2) ($4.7 \mathrm{~g}, 24.2 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL})$, and the solution cooled at $0^{\circ} \mathrm{C}$. Acetic anhydride $(3.6 \mathrm{~g}, 35.5 \mathrm{mmol})$ was added, followed by dry $\mathrm{Et}_{3} \mathrm{~N}$ ($5.5 \mathrm{~g}, 55 \mathrm{mmol}$) and 4-(dimethylamino)pyridine (0.4 g). The mixture was warmed to room temperature and stirred overnight. The flask was transferred to a Rotavap and concentrated at 40 ${ }^{\circ} \mathrm{C} / 5 \mathrm{mmHg}$. The residue was passed through a short path silica gel column (40 g ca. of silica gel Merck 60 H), using hexane (300 mL) as eluant. Evaporation of the solvent gave 3 as a gas chromatographically pure oil ($5.4 \mathrm{~g}, 95 \%$ yield): IR (neat) 3010 , $2950,1710,1675,1450,990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta$ $0.82(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.0(\mathrm{~m}, 4 \mathrm{H}), 5.4(\mathrm{~m}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / e$ (\%) $236\left(\mathrm{M}^{+}, 3\right), 176(40), 161(100), 119(42), 105(51), 43(86)$.
β-Ionol Acetate (10). Product 10 was prepared and purified ($5.4 \mathrm{~g}, 98 \%$ yield) as previously described for 3: IR (neat) 3010 , $2940,1710,1670,1440,990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) \delta$ $0.95(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.4(\mathrm{~m}, 2 \mathrm{H}), 1.6(\mathrm{~m}, 2 \mathrm{H})$, $1.67(\mathrm{~s}, 2 \mathrm{H}), 1.6(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}$, $3 \mathrm{H}), 5.4(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} m / e(\%) 236$ $\left(\mathrm{M}^{+}, 3\right), 176(20), 161(68), 133(28), 119(36), 105(45), 91$ (30), 43 (100).
(E)-1-(2,6,6-Trimethylcyclohex-2-en-1-yl)-3-(trimethyl-silyl)but-1-ene (4). To a solution of (trimethylsilyl)cuprate ${ }^{3}$ (1.50 mmol) in THF (5 mL), cooled at $-78^{\circ} \mathrm{C}$, was added acetate $3(650$ $\mathrm{mg}, 2.75 \mathrm{mmol}$) in THF (1 mL). The mixture was allowed to warm to room temperature overnight and transferred into a separatory funnel, and diethyl ether (25 mL) was added followed by
$\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$ solution (5 mL). The organic layer was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent and purification by column chromatography on silica gel (eluant: hexane) gave 520 mg of 4 (76% yield): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{Mhz}$) $\delta-0.079(\mathrm{~s}, 9 \mathrm{H}), 0.758(\mathrm{~s}, 3 \mathrm{H}), 0.823(\mathrm{~s}, 3 \mathrm{H}), 0.991(\mathrm{~d}, 3 \mathrm{H}, J$ $=7 \mathrm{~Hz}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.536(\mathrm{~s}, 3$ H), 1.94 (m, 2 H), 2.013 (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}$), 4.946 (ddd, $1 \mathrm{H}, J_{1}$ $\left.=16 \mathrm{~Hz}, J_{2}=9 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}\right), 5.31(\mathrm{~m}, 1 \mathrm{H}), 5.356\left(\mathrm{ddd}, J_{1}=\right.$ $16 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, J_{3}=1 \mathrm{~Hz}$); MS $m / e(\%) 250\left(\mathrm{M}^{+}, 5\right), 73(100)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Si}$: C, 76.77, H, 12.07. Found: C, 76.07; H, 12.10 .
(E)-1-(2,6,6-Trimethylcyclohex-1-en-1-yl)-3-(trimethylsilyl) but-1-ene (11). Product 11 was prepared and purified (580 $\mathrm{mg}, 84 \%$ yield) as previously described for $4:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz) $\delta-0.050(\mathrm{~s}, 9 \mathrm{H}), 0.926(\mathrm{~s}, 3 \mathrm{H}), 0.931(\mathrm{~s}, 3 \mathrm{H}), 1.044$ $(\mathrm{d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 3 \mathrm{H})$, $1.620(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 5.326\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=17 \mathrm{~Hz}, J_{2}=10\right.$ Hz), $5.593(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}) ; \mathrm{MS} m / e(\%) 250\left(\mathrm{M}^{+}\right), 73(100)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Si}$: C, 76.77; H, 12.07. Found: C, 76.32; H, 12.11.

1-(2,6,6-Trimethylcyclohex-2-en-1-yl)-3-(trimethylsilyl)-butane-1,2-diol (5). Osmium tetraoxide (2.5 mL of a $2.5 \mathrm{wt} \%$ solution in 2 -methyl-2-propanol, 0.25 mmol) was added to a solution of trimethylamine N-oxide dihydrate ($225 \mathrm{mg}, 2 \mathrm{mmol}$ in THF/water, $10 / 1(2.5 \mathrm{~mL})$). Allylsilane $4(500 \mathrm{mg}, 2 \mathrm{mmol})$ dissolved in THF/water $8 / 1(1 \mathrm{~mL})$ was added slowly at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature overnight. Methyl sulfide (0.5 mL) was added, the mixture was filtered, and the clear solution was extracted with diethyl ether and washed with a saturated solution of HCl and brine. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solution was evaporated, and the crude product was purified by column chromatography on silica gel (eluant ethyl acetate), yielding 430 mg (75%); IR (neat) $3450,2940,1460,1250,850 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta-0.020(\mathrm{~s}, 9 \mathrm{H}), 0.790(\mathrm{~s}, 3 \mathrm{H}), 0.801$ ($\mathrm{s}, 3 \mathrm{H}$) , $0.830(\mathrm{~d}, J=5 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.556(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH})$, $4.10(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H})$; MS $m / e(\%) 266\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 43$ (100).
(E)-1-(2,6,6-Trimethylcyclohex-2-en-1-yl)but-2-en-1-ol (α Damascol, 6). Potassium hydride (228 mg of a 35% dispersion in mineral oil, 2 mmol) was washed with pentane under nitrogen atmosphere; THF (5 mL) was added, followed by diol 5 (400 mg , $1.4 \mathrm{mmol})$. The mixture was stirred at room temperature for 30 min, water was cautiously added, and the product was extracted into ether. The ether was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum to give product 6 as an oil. Column chromatography on silica gel (eluant hexane/ethyl acetate $10 / 1$) gave $220 \mathrm{mg}, 81 \%$ yield: IR (neat) $3450,2960,1620,1450,980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 300 MHz), $\delta 0.968(\mathrm{~s}, 3 \mathrm{H}), 1.014(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.506$ $(\mathrm{s}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (d, $1 \mathrm{H}, \mathrm{OH}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~m}$, $1 \mathrm{H})$; MS m/e (\%) $194\left(\mathrm{M}^{+}, 11\right), 43$ (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 80.30 ; \mathrm{H}, 11.41$. Found: C, $80.20 ; \mathrm{H}, 11.36$.
(E)-1-(2,6,6-Trimethylcyclohex-2-en-1-yl)but-2-en-1-one (α-Damascone, 7). To a dispersion of MnO_{2} (activated form, purchased from Aldrich) (1 g) in acetone, alcohol $6(194 \mathrm{mg}, 1$ mmol) was added, and the mixture was stirred until TLC showed disappearance of the starting material. The liquid was decanted, and the residue was washed several times with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers collected were washed with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, α-damascone (7) was purified by PTLC (eluant hexane/ethyl acetate ($20 / 1$) to yield $103 \mathrm{mg}, 54 \%$: IR (neat) $2980,1690,1660$, $825 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.835(\mathrm{~s}, 3 \mathrm{H}), 0.960(\mathrm{~s}$, $3 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.550(\mathrm{~s}, 3 \mathrm{H}), 1.886(\mathrm{~d}, \mathrm{~J}=$ $6 \mathrm{~Hz}, 3 \mathrm{H}), 2.796(\mathrm{~s}, 1 \mathrm{H}), 5.421(\mathrm{~m}, 1 \mathrm{H}), 6.196\left(\mathrm{dq}, J_{1}=16 \mathrm{~Hz}\right.$, $\left.J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.779\left(\mathrm{dq}, J_{1}=16 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}, 1 \mathrm{H}\right) ;[\alpha]^{20}$ D $=+330^{\circ}\left(c=10, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $\left.{ }^{7 \mathrm{c}}[\alpha]^{20}{ }_{\mathrm{D}}=+324^{\circ}\left(c=10, \mathrm{CHCl}_{3}\right)\right]$.
(E)-1-(2,6,6-Trimethylcyclohex-1-en-1-yl)but-2-en-1-ol (β Damascol, 12). To a dispersion of MCPBA (431 mg of 80% MCPBA, 2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ cooled at $-78^{\circ} \mathrm{C}$ was added allylsilane $11(500 \mathrm{mg}, 2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The mixture was warmed to room temperature, and then methyl sulfide (1 mL) was added. The mixture was diluted with diethyl ether (20 mL) and washed subsequently with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the solvent was evaporated and
the crude product was dissolved in THF (2 mL) and added to a solution of TBAF $3 \mathrm{H}_{2} \mathrm{O}(540 \mathrm{mg}, 2 \mathrm{mmol}$) in THF (5 mL). The mixture was stirred overnight and then diethyl ether (10 mL) was added; the organic layer was washed with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, 12 was purified by column chromatography on silica gel (eluant hexane/ethyl acetate, $8 / 1$), affording $216 \mathrm{mg}, 55 \%$: IR (neat) $3470,2930,1655,1630,1460,877 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 0.968(\mathrm{~s}, 3 \mathrm{H}), 1.014(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 1.406(\mathrm{~s}, 3 \mathrm{H}), 1.715$ (d, $J=5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.78(\mathrm{~m}, 2 \mathrm{H}), 2.783(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.445(\mathrm{~d}$, $J=7 \mathrm{~Hz}, 1 \mathrm{H}), 5.531\left(\mathrm{dq}, J_{1}=15 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.780(\mathrm{dq}$, $\left.J_{1}=15 \mathrm{~Hz}, J_{2}=2 \mathrm{~Hz}, 1 \mathrm{H}\right) ; \mathrm{MS} m / e(\%) 194\left(\mathrm{M}^{+}, 11\right), 123(29)$, 109 (37), 91 (21), 55 (22), 43 (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O} ; \mathrm{C}$, 80.30; H, 11.41. Found: C, 80.46; H, 11.46.
(E)-1-(2,6,6-Trimethylcyclohex-1-en-1-yl)but-2-en-1-one (β-Damascone, 13). Pyridinium dichromate ($376 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in dry DMF (2 mL), and alcohol 12 ($194 \mathrm{mg}, 1 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 2 h , then $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the solution was washed with a HCl solution followed by brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated and 13 was purified by PTLC (eluant hexane/ethyl acetate, 20/1) to give $130 \mathrm{mg}, 68 \%$ yield: IR (neat) $2940,1675,1640,1615,970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), $\delta 0.986(\mathrm{~s}, 3 \mathrm{H}), 1.016(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.486$ $(\mathrm{s}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.906\left(\mathrm{dd}, J_{1}=6 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.061$ (dq, $J_{1}=16 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.629\left(\mathrm{dq}, J_{1}=16 \mathrm{~Hz}, J_{2}=6\right.$ $\mathrm{Hz}, 1 \mathrm{H}$); MS $m / e(\%) 192\left(\mathrm{M}^{+}, 12\right), 136(43), 43(100)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 81.20 ; \mathrm{H}, 10.48$. Found: C, $80.87 ; \mathrm{H}, 10.56$.
(E)-1-(2,6,6-Trimethylcyclohexa-1,3-dienyl)but-2-en-1-one (β-Damascenone, 14). N-Bromosuccinimide ($196 \mathrm{mg}, 1.1 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, ketone $13(192 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(3 \mathrm{~mL})$ was added, and the mixture was heated at $50^{\circ} \mathrm{C}$; DABCO ($224 \mathrm{mg}, 2 \mathrm{mmol}$) was added, followed by 4 -(dimethylamino) pyridine (15 mg). After filtration the solution was poured in a round-bottomed flask, and the solvent was evaporated at a rotavap. The flask was transferred in a Kughelrohr apparatus and heated at $80^{\circ} \mathrm{C}$ under vacuum (25 mmHg) for 1 h . The residue was treated with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $10 \% \mathrm{HCl}(2 \mathrm{~mL})$. The organic layer was separated, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent product 14 was purified by column chromatography on silica gel (eluant hexane/ethyl acetate, 20/1) to yield $168 \mathrm{mg}, 86 \%$: IR (neat) $2940,1670,1635$, $1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 1.005(\mathrm{~s}, 3 \mathrm{H}), 1.010(\mathrm{~s}$, $3 \mathrm{H}), 1.625$ (s, 3 H), 1.930 (dd, $\left.J_{1}=7 \mathrm{~Hz}, J_{2}=1 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.109$ (d, $J=2 \mathrm{~Hz}, 2 \mathrm{H}$), $5.79(\mathrm{~m}, 2 \mathrm{H}), 6.10\left(\mathrm{dq}, J_{1}=16 \mathrm{~Hz}, J_{2}=1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.750\left(\mathrm{dq}, J_{1}=1 \mathrm{~Hz}, J_{2}=7 \mathrm{~Hz}, 1 \mathrm{H}\right) ; \mathrm{MS} \mathrm{m} / e(\%) 190$ (1), 126 (36), 43 (100). Anal. Caled for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 82.06 ; \mathrm{H}$, 9.54. Found: C, 82.46; H, 9.56.

Acknowledgment. We thank the CNR (Rome) for the financial assistance, the Consorzio del Vino Chianti Gallo Nero (Florence) for a grant to E.A. and C.F., and C. Taiti (University of Florence) for technical support.
Registry No. 1, 24190-29-2; 2 (isomer 1), 124152-01-8; 2 (isomer 2), 120523-19-5; 3 (isomer 1), 124152-02-9; 3 (isomer 2), 124152 -04-1; 4, 124099-57-6; 5, 124099-58-7; 6, 28102-24-1; 7, 28102-28-5; 8, 79-77-6; $(\pm)-9, \quad 53078-25-4 ;(\pm)-10,124152-03-0 ;(\pm)-11$, 124099-59-8; (\pm)-12, 124099-60-1; 13, 23726-91-2; 14, 23726-93-4.

An Efficient Synthesis of α-Silylacetates Having Various Types of Functional Groups in the Molecules

Yasuyuki Kita,* Jun-ichi Sekihachi, Yoshikazu Hayashi, Yong-Zhong Da, Miki Yamamoto, and Shuji Akai
Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan

Received June 21, 1989
The synthetic utility of α-silyl esters has been shown in a variety of organic reactions. ${ }^{1}$ One of the most practical

[^0]: (1) See for example: Weeks, W. W. In Biogeneration of Aromas; Parlamient, T. H., Croteau, R., Eds.; ACS Symposium Series 317; American Chemical Society: Washington, DC, 1986; p 157.
 (2) For the more recent syntheses, see: Fehr, C.; Galindo, J. J. Am. Chem. Soc. 1988, 110,6909 . Snowden, R. L.; Linder, S. M.; Muller, B. L.; Shulte-elte, K. H. Helv. Chim. Acta 1987, 70, 1868. Zaidlewicz, M. Tetrahedron Lett. 1986, 27, 5135. Noef, F.; Decarzant, R. Tetrahedron 1986, 42, 3245. Uneyama, K.; Fujibayashi, S.; Torii, S.; Tetrahedron Lett. 1985, 27, 4637.

[^1]: (3) Capella, L.; Degl'Innocenti, A.; Reginato, G.; Ricci, A.; Taddei, M.; Seconi, G. J. Org. Chem. 1989, 54, 1473.
 (4) Vedejs, E.; McClure, C. K. J. Am. Chem. Soc. 1986, 108, 1094.
 (5) Fleming, I.; Terret, N. K. J. Organomet. Chem. 1984, 264, 99.
 (6) The last oxidative step was dramatic for the overall yields which dropped from 41% (α-damascol, 6) to 22% (α-damascone, 7).
 (7) $(+)$ - α-Ionone (1) was obtained resolving the commercially available material. (a) Woodward, R. B.; Kohmann, T. P.; Harris, G. C. J. Am. Chem. Soc. 1941, 63, 120. (b) Sobotka, H.; Bloch, E.; Cahnmann, H.; Feldbau, E.; Rosen, E. J. Am. Chem. Soc. 1943, 65, 2061. (c) Ohloff, Uhde, G. Helv. Chim. Acta 1970, 53, 531.
 (8) Demole, E.; Enggist, P.; Sauberl, U.; Stall, M.; Kovats, E. sz. Helv. Chim. Acta 1970, 53, 541.

